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ABSTRACT: Heavier metals are naturally occurring elements with densities at least five times greater than water's and huge 

atomic weights. Their many uses in industry, agriculture, home goods, medicine, and technology have led to their extensive 

release into the environment, which has raised concerns about their potential impact on human health and the environment. 

The chemical species, amount, and method of exposure are only a few of the factors that determine how dangerous they are. 

Other factors include the exposed person's age, gender, heredity, and nutritional status. Because of their extreme toxicity, 

mercury, lead, chromium, cadmium, and arsenic are deemed priority metals that are relevant to public health. As systemic 

toxicants, these metals are known to harm a wide variety of organs even at low concentrations of exposure. They are deemed 

carcinogenic to humans by both the prestigious International Agency for Research on Cancer and the United States 

Environmental Protection Agency. This research delves into the production and use of the substance, its possible effects on 

humans, and the molecular processes of carcinogenicity, genotoxicity, and toxicity. 
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INTRODUCTION 

Metals with a density higher than water are called heavy 

metals [1]. Heavy metals are another name for metalloids like 

arsenic that may be dangerous even at low exposure levels, 

on the assumption that they are poisonous and heavy [2]. In 

recent years, these metals' contamination of the environment 

has become an increasingly pressing issue for human health 

and the environment on a global scale. Furthermore, human 

exposure has grown substantially as a result of the 

exponential development in the number of these chemicals' 

industrial, agricultural, household, and technological usage 

[3]. In the environment, several metal sources are found 

which include atmospheric, household effluent, 

pharmaceutical, agricultural, industrial, and geogenic sources 

[4]. Environmental contamination is mostly caused by point 

sources, which include metal-based industrial operations such 

as foundries, smelters, mining, and others [1, 3, 4]. 

While heavy metals are present in all of Earth's crust, human 

activities such as metal mining and smelting, industrial 

production and use, and the use of metals and compounds 

containing metals in agriculture and household settings are 

the primary causes of environmental contamination and 

human exposure [4–7]. Additional pathways for 

environmental contamination include metal corrosion, air 

deposition, soil erosion, heavy metal leaching, sediment re-

suspension, and metal evaporation from water resources into 

soil and groundwater [8]. Reportedly, weathering and 

volcanic eruptions are also significant contributors to metal 

contamination. Industrial sources include, but are not limited 

to, enterprises that process paper, plastic, textiles, 

microelectronics, wood, metal, coal, petroleum, nuclear 

power, and high-tension lines [9–11]. 

Many physiological and biological processes need metals 

including magnesium, selenium, nickel, molybdenum, 

magnesium, manganese, iron, chromium, copper, cobalt, and 

zinc [12]. As a result of not getting enough of particular 

micronutrients, several deficiency diseases and syndromes 

manifest [12]. The fact that heavy metals are present in 

several environmental matrices at very low quantities 

(between 0.1 and 0.01%) [13] further qualifies them as trace 

elements. Physical variables like temperature, phase 

association, adsorption, and sequestration all have an impact 

on their bioavailability. Furthermore, octanol/water partition 

coefficients, complexation kinetics, lipid solubility, and 

chemical variables affecting speciation at thermodynamic 

equilibrium are also relevant [14]. Trophic interactions, 

species characteristics, and the capacity to adapt 

physiologically and biochemically are also important 

biological factors [15]. The vital heavy metals contribute to 

the physiological and metabolic processes in all living things. 

Involved in a wide variety of oxidation-reduction reactions, 

they are integral parts of many key enzymes [12]. Several 

enzymes associated with oxidative stress need copper as a co-

factor. These enzymes include dopamine β-monooxygenase, 

monoamine oxidase, cytochrome c oxidases, peroxidase, 

superoxide dismutase, catalase, and ferroxidases [16–18]. So, 

it's an essential nutrient that's part of a lot of metalloenzymes 

that do things like make hemoglobin, break down carbs, 

make catecholamines, and cross-link keratin, collagen, and 

elastin. Because copper may cycle between an oxidized and a 

reduced state, cuproenzymes that participate in redox 

reactions make use of this property [16–18]. The fact that 

copper may undergo transitions from Cu(II) to Cu(I) would 

make it potentially dangerous because of the radicals 

superoxide and hydroxyl that might be created [16–19]. 

Furthermore, cellular damage produced by elevated copper 

exposure has been linked to Wilson disease in humans [18, 

19]. While copper and many other elements are essential for 

bodily function, too much of any one metal may harm cells 

and tissues, leading to a cascade of unsavory side effects and 

diseases. Copper and chromium are two examples of metals 

with a narrow concentration range between beneficial and 

detrimental effects [19, 20]. Due to their lack of established 

biological roles, the following metals are also considered 

non-essential: metals such as aluminum, antimony, arsenic, 

barium, bismuth, cadmium, gallium, germanium, gold, 

indium, lead, lithium, mercury, nickel, platinum, silver, 

strontium, tellurium, thallium, tin, titanium, vanadium, and 

uranium [20].  

There is evidence that heavy metals may damage many 

cellular organelles and biological system components. 

Enzymes that play a role in metabolism, detoxification, and 
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damage repair are among them, along with the cell 

membrane, mitochondria, lysosome, endoplasmic reticulum, 

and nuclei [21]. Researchers have shown that metal ions may 

cause DNA damage and alter its structure, which in turn can 

cause apoptosis, cancer, or alterations to the cell cycle [20-

22]. We found that some metals, including mercury, lead, 

chromium, cadmium, and arsenic, are hazardous and 

carcinogenic due to reactive oxygen species (ROS) and 

oxidative stress [23-32], respectively.  

Some of the mechanisms that contribute to the 

carcinogenicity and toxicity caused by heavy metals remain 

unclear. However, it is well acknowledged that each metal 

has unique traits and physicochemical properties, which in 

turn cause specific toxicological effects. This research 

examines the environmental occurrence, production, and 

consumption of arsenic, cadmium, chromium, lead, and 

mercury, as well as their potential exposure to humans and 

the molecular processes by which they are toxic, genotoxic, 

and carcinogenic. 

Arsenic 

Industrial use and production, environmental occurrence 

The element arsenic is present in almost all environmental 

matrices, although in trace amounts [33]. Inorganic arsenic is 

mostly found in two forms: trivalent arsenite and pentavalent 

arsenate. Organic forms include trimethylarsine oxide, 

dimethylarsinic acid, and monomethylarsonic acid, all of 

which are methylated metabolites. Soil erosion and volcanic 

eruptions are two examples of natural processes that may 

pollute the environment with arsenic [33]. Human activity is 

another major contributor. Herbicides, insecticides, 

fungicides, algicides, sheep dips, wood preservatives, and 

dyes are only a few of the agricultural items made from 

arsenic-containing compounds obtained via industrial 

manufacture. Also, veterinarians have used them to get rid of 

tapeworms in cattle and sheep [34]. Compounds containing 

arsenic have been used to treat trypanosomiasis, syphilis, 

yaws, and amoebic dysentery for at least a hundred years [34, 

35]. Some tropical diseases, such as amoebic dysentery and 

African sleeping sickness, and parasitic disorders, like 

filariasis in dogs and blackheads in chickens and turkeys, are 

still treated with arsenic-based drugs in veterinary medicine 

[35]. Arsenic trioxide is now a valid anticancer medication 

for acute promyelocytic leukemia, according to a recent FDA 

approval [36]. One mechanism by which it exerts its 

therapeutic effects is by causing leukemia cells to commit 

programmed cell death, more often known as apoptosis 

[24,25]. 

Exposure 

In countries like Bangladesh, India, Chile, Uruguay, Mexico, 

and Taiwan, where groundwater is highly contaminated with 

arsenic, millions of people are supposedly exposed to the 

metal daily. Oral (by swallowing), inhalation, skin contact, 

and parenteral routes are all potential ways that arsenic might 

be exposed to the body [33, 34, 37]. Arsenic air 

concentrations may range from 20 to 100 ng/m
3
 in urban 

areas, but only 1 to 3 ng/m3 in rural regions unaffected by 

human activity. Usually, its water content is below 10µg/L, 

however, you could find higher concentrations close to places 

where minerals are mined or naturally occurring [38].  

The bulk of people's exposure comes mostly from their food, 

with an average daily consumption of around 50 µg. In areas 

where arsenic poisoning is prevalent, exposure via the air, 

water, and soil may become substantial, even though it is 

usually much lower. Worker exposure to arsenic levels may 

be much higher in companies that produce or use arsenic 

compounds i.e. wood preservation processes, semiconductor 

manufacturing, pesticide production and application, refining 

of metallic ores, smelting, glass-making, ceramics, 

winemaking [39]. The United States Environmental 

Protection Agency has identified arsenic at 781 out of 1,300 

hazardous waste sites [33, 39]. Animals, contaminated soil, 

water, or even airborne dust particles are just a few of the 

many ways that people might come into contact with these 

places [40]. 

Significant levels of arsenic pollution are cause for concern 

because arsenic may have many detrimental effects. The 

epidemiological survey demonstrated a strong inter-

relationship between exposure to arsenic and increased health 

outcomes regarding systemic and carcinogenic [41]. 

Attention has been drawn to the toxicity of arsenic due to 

recent reports of huge populations exposed to high quantities 

in their drinking water in countries such as West Bengal, 

Bangladesh, Thailand, Inner Mongolia, Taiwan, China, 

Mexico, Argentina, Chile, Finland, and Hungary. 

Developmental abnormalities, cancer, diabetes (eosinophilia) 

peripheral vascular disease, and cardiovascular disease are 

among the clinicopathological problems shown by these 

populations. Arsenic exposure affects almost every system in 

the body, including the nervous, gastrointestinal, pulmonary, 

skin, and cardiovascular systems [41]. There is a relationship 

between arsenic's molecular shape and the time- and dosage-

dependent negative health effects [42, 43]. The precise 

process by which arsenic induces tumors in humans is still 

unknown, despite the seemingly strong evidence connecting 

the two [44].  

Mechanisms of Toxicity and Carcinogenicity 

It is difficult to analyze the harmful effects of arsenic since its 

toxicity is considerably affected by its oxidation state, and 

solubility [45]. Research has shown that the toxicity of 

arsenic depends on several factors, including gender, age, 

genetic predisposition, exposure frequency, length, and dose 

[46]. Inorganic arsenic has been associated with most cases of 

arsenic poisoning in humans. Inorganic trivalent arsenite 

(AsIII) is as much as two to ten times more dangerous than 

pentavalent arsenate (AsV) [5]. This is probably the process 

by which arsenic affects so many different bodily systems [5, 

47].  

Arsenic hinders cellular respiration by inhibiting many 

enzymes in the mitochondria. One mechanism by which 

arsenic is harmful is because it uncouples oxidative 

phosphorylation [48]. Arsenic inhibits pyruvate oxidation and 

fatty acid betaoxidation in vitro [49]. Inorganic arsenic is 

mostly broken down in humans by methylation [40, 47]. 

People used to think that methylation was a way to detoxify 

arsenic, but new studies suggest that certain methylated 

metabolites with trivalent arsenic may be even more 

dangerous than arsenite [41].  

Genotoxicity studies in humans and rodents have 

demonstrated that arsenic compounds hinder DNA repair in 
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exposed cells [53], and induce sister-chromatid exchanges, 

micronuclei formation, and chromosomal abnormalities in 

cultured cells [50–52]. Reversion testing for Salmonella 

typhimurium cannot detect mutations brought about by 

arsenic compounds. Although arsenic compounds are 

considered to be minor mutagens in bacterial and mammalian 

cells, they exhibit clastogenic properties in many different 

kinds of cells when tested in vitro and in vivo [54]. Research 

into the carcinogenic mechanisms behind arsenic toxicity 

using in vitro cell transformation experiments can be useful 

in situations when animal models are unavailable. Cytotoxic 

effects of arsenic and arsenical compounds on Syrian hamster 

embryo (SHE) cells have been documented [55, 56], in 

addition to morphological alterations in mouse C3H10T1/2 

and BALB/3T3 cells.  

Arsenic trioxide is known to damage human (DNA) 

lymphocytes [57] and mice leukocytes [58] according to the 

found test. In addition, research has shown that arsenic 

compounds may amplify genes, and stop cell division [58, 

59]. As mutagens and promoters, they have been linked to 

many harmful chemicals [60, 61]. 

According to Zhao et al. [62], arsenic may induce aberrant 

gene expression by producing DNA hypomethylation, which 

in turn functions as a carcinogen. In addition to its significant 

stimulation of AP-1 transactivational activity and 

extracellular signal-regulated protein kinase Erk1 [63, 64]. 

But how exactly arsenite's activation of JNK causes tumor 

development or cell transformation remains a mystery.  

In a separate study, Trouba et al. [65] found that cells might 

be more vulnerable to mitogenic activation after long-term 

exposure to high arsenic concentrations. To review, several 

research conducted in the last few years have shown that 

arsenic may interfere with cell signaling pathways. One such 

system is the p53 signaling pathway, which has been 

associated with various kinds of tumors in both animal 

models and human cases [66, 68]. Cancers in humans may 

develop after long-term exposure to arsenic.  

A variety of different cancers are being studied for potential 

treatment success with arsenic trioxide, which has recently 

shown promise in treating acute promyelocytic leukemia [69, 

70]. Acute promyelocytic leukemia's critical molecular 

pathway for cancer cell formation has been identified. A 

study conducted by Puccetti et al. [71] found that human 

lymphoblast cells were more susceptible to arsenic-induced 

cell death when they were pushed to overexpress the BCR-

ABL gene. Arsenic trioxide may induce selective apoptosis in 

acute promyelocytic leukemia cells, according to their 

findings. This compound is tumor-specific. Several 

investigations conducted recently suggest that arsenic may 

induce cell death by influencing other signaling pathways 

[72, 73]. Some research suggests that arsenic may be useful 

in treating myeloma and acute promyelocytic leukemia [74]. 

In conclusion, several cancer therapy studies have shown that 

arsenic trioxide injections may halt cell cycle progression and 

kill cancer cells in vitro.  

Mutations and p53 gene expression in tumors obtained from 

arsenic-intoxicated individuals have also been the subject of 

prior studies. Programmed cell death, genomic plasticity, cell 

cycle control, DNA repair, and differentiation are just a few 

of the many biological activities that p53 facilitates. There is 

mounting evidence from several studies that arsenic may 

affect gene expression [75-78] as well as cells from colon 

cancer [79], lung cancer [80], human leukemia [81], Jurkat-T 

lymphocytes [82], while cells from liver carcinoma [83] are 

also affected. Our in vitro experiments have shown that 

arsenic inhibits these activities in a variety of cell types. In 

addition, we have shown that n-acetyl cysteine and ascorbic 

acid, which are both antioxidants, may impact the oxidative 

stress-mediated arsenic-induced cytotoxicity pathway [84–

86].  

The carcinogenic effects of inorganic arsenic have been the 

subject of several hypotheses. The molecular processes by 

which arsenical promotes cancer, however, remain mostly 

unknown at this time. As an alternative to its more common 

genotoxic and mutagenic effects, inorganic arsenic may 

enhance tumor development by changing signal transduction 

pathways associated with cell proliferation and growth [68]. 

No scientific consensus has been reached about the 

mechanism(s) by which arsenic causes cancer, despite recent 

substantial progress in this area. Arsenic carcinogenesis has 

nine proposed mechanisms of action, according to a recent 

review [87].  

Cadmium 

Industrial use and production, environmental occurrence 

The environmental and occupational impacts of cadmium, a 

heavy metal, are very worrisome. Its typical concentration in 

Earth's crust is 0.1 mg/kg, yet there are enormous amounts of 

it there. The environmental concentration of cadmium 

compounds is highest in sedimentary rocks, with a 

concentration of around 15 mg/kg in marine phosphates [88].  

Cadmium is often used in a variety of industrial operations. 

Alloys, pigments, and batteries are the three main products 

that primarily use cadmium [89]. Although cadmium's use in 

batteries has increased significantly in recent years, 

environmental concerns have caused a decline in its 

commercial utilization in industrialized countries. Take the 

United States as an example; the average daily intake of 

cadmium is around 0.4µg/kg, which is less than half of the 

oral reference dose suggested by the U.S. EPA [90].  

Exposure 

The two most common ways to absorb cadmium are via food 

and secondhand smoke from cigarettes. Skin absorbs very 

seldom. People may be exposed to cadmium in a variety of 

ways; smoking is one of the most common, but other 

methods include working with primary metals, consuming 

tainted food, smoking cigarettes, and being in cadmium-

contaminated workplaces [91, 92, 93, 94]. In addition, 

cadmium levels in the body may be substantially increased by 

eating cadmium-rich foods. Some examples include dried 

seaweed, cocoa powder, prawns, mussels, mushrooms, and 

liver [95, 96]. Osteoporosis and reduced bone mineral density 

as possible outcomes of long-term low-level cadmium 

exposure [97-99].  

Many people choose to find out how much cadmium they've 

been exposed to by testing their blood or urine. High blood 

cadmium levels indicate recent exposure to cadmium, as may 

be seen in cigarette smoke. When cadmium is detected in 

urine, it may be used to determine renal load or cadmium 

accumulation. To account for dilution, the 

cadmium/creatinine ratio is often used [100-103]. Because of 
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cadmium's persistent usage in industrial applications, human 

exposure to metal and environmental contamination have 

both increased dramatically during the last century [104].  

Carcinogenicity and toxicity (Molecular Mechanisms) 

It is believed that reactive oxygen species (ROS) are the 

principal mechanism by which cadmium harms cells  [105-

111]. ROS damages single-strand DNA and impedes protein 

and nucleic acid synthesis [112]. It is not well understood 

how cadmium poisoning occurs. Studies reveal that cadmium 

exposure triggers the expression of many stress response 

pathways, such as those associated with heat shock, oxidative 

stress, stringent response, cold shock, and SOS [113-115]. In 

vitro studies have shown that cadmium, at concentrations 

between 0.1 and 10 mM, may induce DNA damage via 

cytotoxic effects and free radicals [116, 117]. Research in 

living organisms has shown that cadmium, at a dosage of 1 

mg/kg body weight, controls male fertility in a mouse model 

[118]. Cadmium, on the other hand, is a moderate mutagen 

rather than a carcinogen [119]. The generation of inositol 

polyphosphate, a rise in cytosolic free calcium in several cell 

types [120], and the blocking of calcium channels [121, 122] 

are all signal transduction pathways that have been associated 

with cadmium.  

Cadmium compounds have been classified as human 

carcinogens by many regulatory agencies. According to the 

International Agency for Research on Cancer and the United 

States National Toxicology Programme, there is enough 

evidence to suggest that cadmium causes cancer in humans 

[91]. Consistent findings linking cadmium exposure in the 

workplace to lung cancer and strong evidence from animal 

studies showing the pulmonary system as a target site are the 

main reasons for classifying cadmium as a human carcinogen 

[91]. So far, cadmium-induced lung cancer in humans has 

been most definitively shown to occur in the lung. In addition 

to the adrenal glands, testes, injection sites, and hemopoietic 

system, cadmium carcinogenesis in animals may affect other 

tissues [91, 108, 109]. Additionally, exposure to cadmium in 

the workplace or environment has been associated with the 

development of malignancies in the stomach, hematological 

system, kidney, liver, and prostate, according to studies [108, 

109, 126-128]. 

Chromium 

Industrial use and production, environmental occurrence 

Chromium (Cr) is an element that exists naturally on Earth 

and has valence states ranging from II to VI, which 

correspond to different amounts of oxidation [129]. Iron 

chromite and other ores include trivalent chromium 

compounds, also known as Cr(III) compounds, which are 

inert. In terms of stability, the hexavalent [Cr(VI)] form is 

second to none [28]. Elements chromium [Cr(0)] are very 

uncommon to find in nature. The majority of the chromium 

that seeps into our air, water, and soil comes from industrial 

operations, but there are numerous other natural and human-

made sources as well. The primary sectors that release 

chromium into the atmosphere include those dealing with 

metals, tanneries, chromate production, stainless steel 

welding, ferrochrome, and chrome pigments. Air and 

wastewater chromium emissions, mostly from the chemical, 

refractory, and metallurgical industries, have been linked to 

elevated environmental chromium concentrations. 

Hexavalent chromium, or Cr(VI)[130], is the most common 

form of chromium that humans emit into the environment. 

Several groups, both government and non-government, have 

classified the toxic industrial byproduct hexavalent chromium 

[Cr(VI)] as a carcinogen for humans [130-132]. Exposure 

toxicity is proportional to chromium's degree of oxidation; 

metal chromium is quite harmless, while hexavalent 

chromium is very harmful. Soil, water, air, and biological 

components naturally contain Cr(III), but all things 

containing Cr(VI) were thought to be man-made at one point. 

Despite this, levels of naturally occurring Cr(VI) in both 

surface and groundwaters are above the 50 µg/liter drinking 

water guideline set by the World Health Organisation (133). 

Chromium pollutes many ecosystems since it is used so 

extensively in many industrial processes [134-136]. 

Exposure 

To maintain healthy glucose, lipid, and protein metabolism, 

animals and humans alike need the mineral [Cr(III)]. It does 

this by making insulin work better [5]. Industrial workers 

exposed to Cr(VI) have a considerable risk of Cr-induced 

diseases, which has raised severe concerns about 

occupational exposure [137]. Some species and the human 

race as a whole may also be in danger. It is projected that 33 

tonnes of total Cr are released into the environment annually 

[130]. The "safe" limit of 5µg/m3 for an 8-hour time-

weighted average has been established by the U.S. 

Occupational Safety and Health Administration (OSHA), 

even though this reduced amount might still provide a 

carcinogenic risk [138]. While the typical human air value 

ranges from 1 to 100 ng/cm3 [139], these levels may be 

higher in areas close to Cr industries.  

Chromium exposure in the workplace occurs via inhalation 

[140]. Chromium concentrations in the river and lake water 

range from 26 µg/L to 5.2 mg/L, in seawater from 5 to 800 

µg/L, and in soil from 1 to 3000 mg/kg [129]. Chromate 

concentrations in food are greatly affected by processing and 

cooking methods. [141, 142, 143]. It is believed that the 

prevalent dermatitis cases observed in construction workers 

are caused by exposure to chromium present in cement, for 

example [143]. Occupational and environmental exposure to 

chemicals containing Cr(VI) may cause a variety of harmful 

consequences, including cancer of the respiratory tract, 

allergies, asthma episodes, and damage to the kidneys [5, 

144].  

Air pollution with high concentrations of chromium (VI) may 

irritate the nasal mucosa and lead to ulcers. Anaemia, sperm 

destruction, ulcers and inflammation in the small intestine 

and stomach, and damage to the male reproductive system are 

the most typical health difficulties that animals encounter 

when they eat chromium (VI) compounds. It doesn't seem 

that similar problems are caused by compounds containing 

chromium (III), which are far less dangerous. Some 

individuals have severe reactions to chromium (VI) or 

chromium (III), including severe skin redness and swelling. 

Chromium(VI) in drinking water increases the risk of 

stomach cancer in both humans and animals. Serious 

neurological, hematological, liver, pulmonary, 

cardiovascular, and gastrointestinal adverse effects, including 

death, have been reported in humans who have inadvertently 
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or intentionally taken extraordinarily high quantities of 

chromium (VI) compounds [141,145]. 

Mechanisms of Toxicity and Carcinogenicity 

Chromium compounds' toxicity is dependent on their 

oxidation state and solubility. For the same amount of water 

and concentration, Cr(VI) compounds seem to be much more 

systemically dangerous than Cr(III) compounds due to their 

status as powerful oxidizing agents, potential causticity, and 

irritation [146, 147]. When Cr(VI) reduction takes place 

distant from the site of toxic or genotoxic activity, it is 

considered a detoxifying process; nevertheless, when it 

occurs in or near the cell nucleus of target organs, it may 

activate chromium toxicity [148]. Since cells are not good at 

absorbing Cr(III) form of the metal, toxicity will not be 

shown if Cr(VI) is transformed to this form outside of cells. 

The equilibrium between external Cr(VI) and intracellular 

Cr(III) determines the amount and rate of Cr(VI) entry into 

cells and toxicity [134].  

Ascorbic acid, glutathione reductase, hydrogen peroxide 

(H2O2), and GSH may normally decrease Cr(VI), which can 

enter many cell types. Reactive intermediates including 

Cr(III), Cr(V), thiol radicals, and hydroxyl radicals are 

formed during this reduction. Proteins, DNA, and membrane 

lipids may all be damaged by any of these species, which can 

compromise the functioning and integrity of cells [149-151].  

Gumbleton and Nicholls [152] and others found that rats' 

kidneys were injured after receiving a single subcutaneous 

injection of Cr (VI). According to research by Bagchi et al. 

[153, 154], liver mitochondrial and microsomal lipid 

peroxidation, and a rise in the excretion of urine lipid 

metabolites such as malondialdehyde were seen in rats that 

were administered Cr (VI) orally in water.  

Cr (VI) has reportedly had negative effects on human health. 

Epidemiological studies have shown a link between 

occupational exposure to Cr (VI) compounds and the 

development of lung cancer in workers [142, 148, 155, 156]. 

It is believed that oxidative damage is the culprit responsible 

for these genotoxic outcomes, which include DNA strand 

breaks and chromosomal abnormalities [157, 158]. On the 

other hand, recent studies have shown that Cr(VI) 

carcinogenesis is influenced by non-oxidative mechanisms 

[160].  

One possible carcinogenic connection is inhalation of the less 

soluble or insoluble Cr(VI) molecules. The toxicity of Cr(VI) 

is not proportional to its elemental form. In a wide variety of 

chemically unique Cr(VI) complexes, it varies greatly [161, 

162]. According to a mountain of epidemiological evidence, 

Cr(VI) is the main culprit behind cancer. Size, crystal 

modification, surface charge, phagocytization capability, and 

chromium solubility are some of the additional characteristics 

that may play a key role in determining cancer risk [135]. 

According to current research on goldfish (Carassius auratus) 

kidneys and livers, chromium (VI) causes biochemical, 

genotoxic, and histopathologic effects [163].  

Many hypotheses have been advanced to account for the 

carcinogenic effects of chromium and its salts; nevertheless, 

discussing metal carcinogenesis is not without its difficulties. 

A metal cannot be claimed to be intrinsically carcinogenic 

because the potencies of its several components might 

fluctuate. Due to the wide variety of chemical exposures in 

industrial settings, it is difficult to identify a single agent 

responsible for the carcinogenic effects. Consequently, the 

mechanism of action or group of metal compounds is often 

connected to the carcinogenic risk, rather than a specific 

substance. Many factors, including the metal's chemical form, 

the size of the aerosolized particle, and the particle's physical 

characteristics (such as crystal modification and surface 

charge), influence the metal's carcinogenic potential [164]. 

Lead 

Industrial use and production, environmental occurrence 

Lead, a bluish-gray metal that occurs naturally, is present in 

trace amounts in Earth's crust. The majority of the lead in the 

air comes from human activities, such as mining, burning 

fossil fuels, and manufacturing, even though lead is present in 

nature. Lead has several applications in manufacturing, 

farming, and household products. The majority of that 

amount, 83%, went into making lead-acid batteries. The rest, 

1.7%, went into other items such as sheet lead, 2.6% into 

oxides for paint, glass, pigments, and chemicals, and 3.5% 

into weaponry [165, 166].  

Caulking, pipe solder, paints, and ceramic products 

containing lead have seen a significant decline in their 

industrial use as of late [167]. Despite this, statistics indicate 

that 25% of the 16.4 million US households with several 

children under the age of six still had high amounts of lead-

contaminated decaying paint, dust, or adjacent bare dirt 

[168]. Children whose playtimes include bare, polluted soil 

are at increased risk for elevated lead levels in blood and lead 

in dust and dirt may recontaminate cleansed homes [169-

172].  

Exposure 

The most common routes of lead exposure are the 

consumption of lead-contaminated foods, drinks, or paints 

and the breathing in of lead-contaminated dust or aerosols 

[173, 174]. Adults may take up to 35–50% of lead via water, 

while children can absorb even more. The rate of lead 

absorption is affected by factors such as physiological 

conditions and age. Although the bulk of lead is stored in the 

skeleton, the organs that absorb the most lead are the kidneys, 

liver, and other soft tissues such as the brain and heart [175]. 

The nervous system is particularly vulnerable to lead toxicity. 

The central nervous system might experience headaches, 

irritability, short attention span, memory loss, and dullness as 

early indications of lead exposure [170, 173].  

Over the last several decades, lead exposure has been 

significantly decreased as a result of many efforts [173, 174]. 

Not only has the federal government outlawed lead in paint, 

petrol, and soldered cans, but many state and municipal 

health department programs have also supported lead 

abatement in housing and screening programs for child lead 

poisoning [167]. Even with these efforts' successes, lead 

exposure is still a big problem for human health [176, 177]. 

Lead, the most pervasive toxicant, affects many different 

bodily systems, including the kidneys, liver, and central 

nervous system [173].  

The use of lead in hobbies, certain traditional medicines and 

cosmetics, deteriorating house paints, working with lead, and 

exposure to lead from these sources are common causes of 

lead exposure [167, 174]. Several studies analyzed blood lead 

levels in American populations [176]. Even though these 
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surveys have typically shown a decrease in blood lead levels 

during the 1970s, a large number of youngsters still have high 

levels (> 10µg/dL). Therefore, lead poisoning is still one of 

the most common childhood health problems in the United 

States [167, 173, 174, 176-179]. Pregnant women are more 

vulnerable to the harmful effects of lead exposure. Fetuses 

are particularly vulnerable to lead exposure during pregnancy 

because the metal is readily absorbed by the mother [180]. 

Animal studies have shown that lead exposure during 

pregnancy is associated with low birth weight, preterm 

delivery, and neurological abnormalities in the offspring 

[182, 183], and human data corroborate these findings [181].  

Carcinogenicity and toxicity (Molecular Mechanisms) 

Multiple studies have shown lead's negative impacts on 

human health. Studies have shown that children with blood 

level poisoning have a lower IQ [178, 179, 184, 185]. 

Reduced sperm count in men and spontaneous miscarriages 

in women are among the adult reproductive effects associated 

with high lead exposure [186, 187]. Brain damage, kidney 

damage, and gastrointestinal issues are the results of acute 

lead exposure, while chronic lead exposure may negatively 

impact blood pressure, and kidneys [173, 174, 178, 179, 184-

187].  

One of the primary metabolic mechanisms via which lead 

causes damage is its ability to bind with proteins and mimic 

or hinder the activities of calcium [173]. In the skeleton, lead 

has supplanted calcium as a mineral component. Lead binds 

to molecules in living organisms and, via a cascade of 

mechanisms, hampers their functional capacity. Lead alters 

the structure and function of enzymes by binding to their 

sulfhydryl and amide groups. Reduced enzyme activity may 

result from lead's ability to obstruct the passage of essential 

cations like calcium or to compete with significant metallic 

cations for binding sites [188, 189]. Moreover, there was a 

strong association between lead blood content and 

malondialdehyde (MDA) levels in exposed workers, as 

shown by Jiun and Hseien [190]. Glutathione peroxidase and 

superoxide dismutase (SOD) levels were significantly higher 

in the red blood cells of lead-exposed workers compared to 

non-exposed persons, according to subsequent studies [191]. 

In our lab, we have recently discovered that lead-induced 

toxicity and apoptosis in human cancer cells involve various 

cellular and molecular processes. These processes include 

oxidative stress, cell death induction, DNA damage, 

phosphatidylserine externalization, caspase-3 activation, 

transcriptional activation of stress genes, and damage to the 

cell membrane.  

Lead, according to a plethora of research, blocks neuronal 

signaling and intracellular signal transduction by blocking 

calcium-dependent pathways. Organelle storage, such as the 

endoplasmic reticulum and mitochondria, may be affected by 

lead because it interferes with intracellular calcium cycling 

[194, 195]. Lead may sometimes impede calcium-dependent 

activities, such as the release of glutamatergic neurons' 

receptor-coupled ionophores and several neurotransmitters 

[196]. Lead seems to improve calcium-dependent activities in 

some cases, including calmodulin and protein kinase C [194, 

197].  

Experimental investigations have shown that lead may cause 

kidney tumors in rats and mice [198, 199, 200]. More than 

only morphological defects in cultured rat cells, lead 

exposure has also been associated with sister chromatid 

swaps, and gene mutations [204-206].  

Mercury 

Industrial use and production, environmental occurrence 

Mercury, a heavy metal, is in the series of transition elements 

on the periodic table. The fact that it occurs in nature in three 

separate forms—organic, inorganic, and elemental—each 

with its unique toxicity profile [207] is what sets it apart. At 

room temperature, the elemental liquid mercury is a very 

vapor-pressured liquid that is also discharged into the air as 

vapor. Mercury may also exist as a cation with an oxidation 

state of +2 (mercuric) or +1 (mercurous) [208]. Bacteria in 

water and soil methylate inorganic (mercuric) mercury forms 

to produce methylmercury, the most common organic form of 

mercury in nature [209].  

The ubiquitous environmental pollutant mercury causes 

profound alterations in bodily tissues and a cascade of 

detrimental health effects [210]. Various chemical forms of 

mercury are found in the environment and may have an 

impact on both animals and humans. Mercuric, elemental 

mercury vapor, organic mercury compounds, and inorganic 

mercury are all part of this class. Mercury is a ubiquitous 

element in the environment, meaning it is exposed to all 

living things, including plants and animals [212].  

For example, caustic soda production, nuclear reactors, 

antifungal agents in wood processing, solvents for reactive 

and precious metals, pharmaceutical product preservatives, 

electrical industry (switches, thermostats, batteries), and 

dental amalgams are just a few of the many industrial uses for 

mercury [213, 214].  

Exposure 

Dental work, preventive medical treatments, agricultural and 

industrial operations, food contamination, accidents, and 

work-related activities are all potential sources of mercury 

exposure to people [215]. Dietary consumption of fish and 

amalgam fillings in teeth are the leading sources of chronic, 

low-level mercury exposure [216, 217].  

The two most absorbent forms of mercury are methyl 

mercury (MeHg) and elemental mercury (Hg0). According to 

[218], dental amalgams contain almost half of the elemental 

mercury. The lining of the airways in the lungs and mouth are 

excellent receptors for the elemental vapour because of its 

high lipophilicity. Before entering the bloodstream, Hg0 

swiftly traverses several cell membranes, including those of 

the placenta and the blood-brain barrier [219]. Upon entering 

the cell, Hg0 is oxidized, changing into the highly reactive 

Hg2+. Because it is soluble in lipids and absorbed quickly in 

the gastrointestinal tract, methyl mercury may readily 

penetrate the placental and blood-brain barriers after 

consuming fish. After consumption, the excretion rate of 

mercury is negligible. The renal, hepatic, and cerebral tissues 

store a considerable quantity of the ingested substance. 

Nephrotoxicity, neurotoxicity, and gastrointestinal toxicity 

are some of the negative effects of mercury [213]. 

 

Carcinogenicity and toxicity (Molecular Mechanisms) 

The molecular mechanisms of mercury's toxicity point to 

oxidative stress as a contributing factor, by its chemical 

activity and biological features [220, 221]. The mitochondria 
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are the primary sites of reactive oxygen species (ROS) 

production in eukaryotic organisms as a result of normal 

metabolism [222-224].  

An increase in reactive oxygen species is caused by an 

increase in arachidonic acid synthesis, which is in turn 

increased by activation of phospholipase A2. Arachidonic 

acid is also attacked by reactive oxygen species [225]. There 

are several mechanisms by which inorganic and organic 

mercury affect calcium homeostasis [226]. Furthermore, it 

has been shown that rats treated with HgCl2 had elevated 

levels of MDA in their testes, livers, kidneys, and lungs due 

to mercury compounds [227]. Research has shown a 

correlation between the level of hepatotoxicity and 

nephrotoxicity and this increase in concentration [228]. 

Pretreatment with selenium, an antioxidant, significantly 

lowers lipid peroxidation caused by HgCl2. Both direct 

binding to mercury and cofactoring with glutathione 

peroxidase to scavenge reactive oxygen species (ROS) are 

examples of selenium's biological activities [229]. Vitamin E 

shields the liver against mercury chloride-induced lipid 

peroxidation, according to other observations [230].  

The public health community has placed a high priority on 

studies investigating metal-induced carcinogenicity. The 

three known steps of carcinogenesis are promotion, 

progression, and metastasis [231, 232], in addition to DNA 

mutations, which were previously thought to be key players 

because they could either activate oncogenesis or inhibit 

tumor suppression. Mercury and other toxic metals alter the 

biological activity of cellular organelles, according to studies 

[231, 233]. In addition, there is mounting evidence that 

reactive oxygen species (ROS) play a significant role in 

mediating cellular responses to metals [234-236].  

The hypothesis that mercury exposure might cause cancer is a 

hotly contested one. Although several studies have shown 

that mercury has genotoxic potential, no study has found a 

correlation between exposure to the metal and genotoxic 

harm [237]. Based on their findings, researchers have 

pinpointed oxidative stress as the chemical mechanism by 

which mercury causes genotoxicity. Consequently, research 

has shown that mercury may cause cells to produce reactive 

oxygen species (ROS), which can damage DNA and 

potentially initiate carcinogenic processes [238, 239]. When 

these free radicals come into contact with nucleic acids, it 

might cause changes to the DNA. Despite the fact that 

compounds containing mercury do not produce mutagenesis 

in bacterial testing, eukaryotic cell lines have been shown to 

undergo mutational events when exposed to inorganic 

mercury at concentrations as low as 0.5 µM [240, 241, 242].  

People who ingest methylmercury-contaminated fish have 

glutathione levels that are greater than usual, according to 

research [243]. Researchers also found a favourable 

correlation between glutathione levels and mercury in the 

blood. Mercury exposure was also confirmed by their 

findings of polyploidal aberrations and an increased mitotic 

index [243]. Studies on population health have shown that 

genotoxic alterations caused by variations in enzyme activity 

occurred in communities exposed to mercury. These results 

suggest that even modest amounts of mercury exposure over 

time could impair enzyme activity and induce cellular 

oxidative stress [244]. The link between mercury exposure 

and cancer is, without question, a hotly contested topic. 

Mercury exposure in cells may make them more susceptible 

to DNA damage, according to in vitro study. These studies 

add to the growing body of evidence that mercury's 

carcinogenicity and toxicity may differ across different types 

of cells, organs, and animals.  

 

CONCLUSION 

Heavy metals such as arsenic, mercury, cadmium, chromium, 

and lead are present in nature, according to a comprehensive 

review of the available evidence. Still, pollution is mostly the 

result of human actions. All sorts of human diseases have 

been associated with these metals, which are known as 

systemic toxicants. These include diabetes, hearing loss, 

developmental abnormalities, neurological and behavioural 

disorders, cardiovascular illnesses, various forms of cancer, 

and hematologic and immunologic disorders. Skin contact, 

inhalation, and oral consumption are the three most common 

entry points. Negative health effects may range from mild to 

severe, depending on factors such as the kind of heavy metal, 

its chemical form, exposure duration, and dose. Many factors, 

including as valence, particle size, solubility, chemical form, 

and biotransformation, govern speciation, which in turn 

affects metal toxicokinetics and toxicodynamics. Even 

though specific metals have proven acute and long-term 

effects, the health repercussions of mixtures of hazardous 

elements are unclear. New evidence suggests that these 

dangerous compounds may interfere with the metabolic 

processes of minerals that are vital to human health, such as 

zinc, iron, calcium, and copper [245, 246]. The cumulative 

harmful effects of heavy metals have received very little 

attention from scientists. The negative consequences of heavy 

metal exposure might be cumulative, synergistic, or 

antagonistic depending on the metals in question.  

A recent meta-analysis of several studies that dealt with metal 

interactions found that biomarker-specific exposure to 

metal/metalloid combinations including arsenic, lead, and 

cadmium had more severe effects at comparatively high 

dosage and low dose levels [247]. Results showed that these 

effects were due to genetic factors, exposure duration, and 

dose. In addition, compared to those exposed to inorganic 

arsenic or cadmium alone, those exposed to both elements 

together caused more severe kidney injury [248]. Many areas 

that are contaminated with metals pose a significant threat to 

human health due to chronic low-dose exposure to many 

elements. To manage chemical mixtures and evaluate health 

hazards, it is essential to understand the molecular basis of 

interactions between heavy metals. The molecular 

mechanisms and public health impacts of human exposure to 

harmful metal combinations remain unclear, necessitating 

more research. 
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